MSUD prevalence estimates from publicly available datasets

Rebecca Ahrens-Nicklas, MD, PhD Division of Human Genetics, Section of Metabolism The Children's Hospital of Philadelphia

How common is MSUD?

\neq	Table	2	
--------	-------	---	--

Summary table for the German NBS data with details about region and years included.

Orphan drug designation qualifies sponsors for incentives including:

- 7-year marketing exclusivity to sponsors of approved orphan products
- •25% federal tax credit for expenses incurred in conducting clinical research within the United States
 - Tax credits may be applied to prior year or applied over as many as 20 years to future taxes
- •Waiver of Prescription Drug User Fee Act (PDUFA) fees for orphan drugs
 - A value of approximately \$2.9 million in 2021

•Ability to qualify to compete for research grants from the Office of Orphan Products Development (OOPD) to support clinical studies for orphan drugs

•Eligibility to receive regulatory assistance and guidance from the FDA in the design of an overall drug development plan

The <u>Orphan Drug Act</u> defines a rare disease as a disease or condition that affects less than 200,000 people in the United States.

Miller et al. Orphanet J Rare Dis 16, 265 (2021).

Miller et al. Orphanet J Rare Dis 16, 265 (2021).

Is there another way to estimate incidence? Can we use basic genetic principles?

Autosomal Recessive Inheritance

National Cancer Institute

Is there another way to estimate incidence? Can we use basic genetic principles?

National Cancer Institute

Is there another way to estimate incidence? Can we use basic genetic principles?

Hardy-Weinberg Principle Is there another way to estimate incidence? Parent generation Can we use basic genetic principles? YY уу Yy Phenotype .42 .09 .49 Genotypic frequency 210 245 45 Number of individuals (total = 500)y: 210 + 90 = 300 Number of alleles Y: 490 + 210 = 700 in gene pool (total = 1000) $\frac{300 \text{ y}}{1000 \text{ total}} = .3 = q$ Large genome sequencing datasets can 700 Y = .7 = pAllelic frequency 1000 total help us figure out allele frequencies Hardy-Weinberg p (.7) q (.3) analysis Yy YY p (.7) $p^2 = .49$ pq = .21 Yy yy q (.3) $q^2 = .09$ pq = .21 p² 2pq + 1 q^2 Ξ .72 2(.7)(.3) .3² + 1 + = .49 .42 .09 1 = + Predicted Predicted Predicted frequency frequency frequency of YY of Yy of yy offspring offspring offspring

Large databases of genomic data

Population	Description	Genomes
afr	African/African American	21,042
ami	Amish	450
amr	Latino/Admixed American	6,835
asj	Ashkenazi Jewish	1,662
eas	East Asian	1,567
fin	Finnish	5,244
nfe	Non-Finnish European	32,299
sas	South Asian	1,526
oth	Other (population not assigned)	1,077
Total		71,702

https://gnomad.broadinstitute.org

Examples of *DBT* **variants in gnomAD**

Variant ID	 Clinical Significance 	Allele Count	Allele Number	Allele Frequency	VEP Annotation
1-100196389-A-G		2	136152	1.47e-5	missense
1-100196395-C-G		1	125028	8.00e-6	missense
1-100196395-C-T	Conflicting interpretations of pathog	2	125028	1.60e-5	missense
1-100196405-G-C		1	110086	9.08e-6	missense
1-100196410-A-G		1	130224	7.68e-6	missense
1-100196413-G-A	Pathogenic/Likely pathogenic	2	106800	1.87e-5	stop gained
1-100196425-AGAAAT-A		5	59838	8.36e-5	splice region

The next step is to determine which variants are truly disease-causing

	Benign					
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path, missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>	
De novo data	ar 			De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3	2	
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Diego Quintero, MS CGC

Kierstin Keller, MS CGC Mined the gnomAD database for all predicted loss of function and missense variants (classified as P/LP and VOUS) in the three genes associated with Maple Syrup Urine Disease: DBT, BCKDHA, BCKDHB

A special thank you to all of the families, patients, and foundations that support our work!

Brian White Laura Adang Lars Schlotawa **Kiran Musunuru Bill Peranteau** Xiao Wang **Mohamad-Gabriel Alameh Lindsey George Eric Marsh Beverly Davidson** Luis Tecedor **Elizabeth Bhoj Stefano Rivella** Lucas Tricoli **Adeline Vanderver**

Key Collaborators:

Children's Hospital of Philadelphia RESEARCH INSTITUTE

Intellectual and Developmental Disabilities Research Center

National Institute of

and Stroke

Neurological Disorders

Zuckerberg

Initiative

Eunice Kennedy Shriver National Institute of Child Health and Human Development orphan
 disease center

